

Metal-organic frameworks: Metal-directed assembly and novel catalysts

July, 2015

Joseph Hupp Northwestern University and Argonne Natl. Lab

Acknowledgments

ANL:

- Dr. Karena Chapman
- Dr. Ana Platero-Prats
- Dr. In-Soo Kim
- Dr. John Emery
- Dr. Alex Martinson
- Dr. Jeff Miller

PNNL:

Dr. Aleksei Vjunov

NU:

- Dr. Zhanyong Li
- Jason Avila
- Dr. Martino Rimoldi
- Timothy Wang
- Dr. Neil Schweitzer
- Prof. Omar Farha

UMN:

- Prof. Chris Cramer
- Prof. Laura Gagliardi

Acknowledgments

Office of Science

Arrays of metal-containing clusters for catalysis

• Water splitting: Electrocatalysis of water oxidation

 Heterogeneous catalysis of gas-phase reactions, e.g. alkene hydrogenation

From: Umena, et al., *Nature* **2011**, *473*, 55-61.

Artificial clusters as catalysts for O₂ or H₂ evolution

How can we:

- create open sites?
- precisely control cluster size, shape, and composition?
- avoid cluster aggregation?
- address clusters photochemically?

From: Umena, et al., *Nature* **2011**, *473*, 55-61.

Synthesis Approach: Atomic Layer Deposition

Thin-film ALD on a Surface

Oxygen

Aluminum

- Vapor phase → conformal
- 2 steps per cycle → selflimiting
- Repetition → error correction (pinhole elimination)
- Angstrom-level precision for average film thickness
- High reproducibility: automated

Synthesis Approach: Atomic Layer Deposition

Thin-film ALD on a Surface

ALD on a Molecular Platform

electrode

ALD-like synthesis of electrode-supported arrays of metal-oxide clusters

Using an analytic island growth model, the density and size of nucleation sites can be ascertained using "in synthesis" quartz-crystal microgravimetry (QCM)

In-synthesis QCM shows successful growth of "Mn(OH)₂" clusters on metalated porphyrin platforms

~1.5 nm \rightarrow R_{cov} = 0.75 nm

With Zn porphyrin, no nucleation site is present. Experiment also shows that cluster growth at porphyrin interstitial sites is essentially nonexistent.

Avila, Martinson

Figure 5 – GISAX scattering profile of MnO on porphyrin

- Preliminary GISAX insitu scattering showing form factor evolution and inter-particle scattering
- Silicon platform shows less form factor evolution and minimal inter particle scattering

qy cut showing form factor of MnO clusters grown on porphyrin vs Si

- In-plane cut shows clear feature with the porphyrin platform and not the silicon support
- Silicon platform shows only increase in intensity
- Porphyrin peak indicates a cluster cluster distance of 5 angstroms

Similar idea: Nickel oxide cluster formation

Does it work? Electrochemical water oxidation by NiO clusters

Current density in alkaline electrolyte (1 M NaOH)

Differing numbers of ALD synthesis cycles

Does it work?

Electrochemical water oxidation by NiO clusters

Current density in alkaline electrolyte (1 M NaOH)

Differing numbers of ALD synthesis cycles

Normalized for cluster mass

Tafel plots for oxygen evolution via nickel oxide clusters in 1 M hydroxide

56 mV Tafel slope →
β = 0.95 → 1 e⁻ transferred
before rate-determining
chemical step

Tafel plots for oxygen evolution via nickel oxide clusters in 1 M hydroxide

56 mV Tafel slope \rightarrow $\beta = 0.95 \rightarrow 1 e^{-}$ transferred before rate-determining chemical step

48 mV Tafel slope → second e⁻ transfer (e-chem step) is rate determining

7 Ni/cluster

Tafel plots for oxygen evolution via nickel oxide clusters in 1 M hydroxide

56 mV Tafel slope \rightarrow $\beta = 0.95 \rightarrow 1 e^{-}$ transferred before rate-determining chemical step

48 mV Tafel slope → second e⁻ transfer (e-chem step) is rate determining

33 mV Tafel slope \rightarrow β = 1.8 \rightarrow 2 e⁻ transferred before rate-determining chemical step

Tafel plots for oxygen evolution via nickel oxide clusters in 1 M hydroxide

56 mV Tafel slope \rightarrow $\beta = 0.95 \rightarrow 1 e^{-}$ transferred before rate-determining chemical step

48 mV Tafel slope → second e⁻ transfer (e-chem step) is rate determining

33 mV Tafel slope \rightarrow $\beta = 1.8 \rightarrow 2 e^{-}$ transferred before rate-determining chemical step

Rate-determining step is cluster size dependent!

Mixed Metal-Oxide clusters are better catalysts Ni-Fe

Typical J-V curves vs Normalized curves for the number of electroactive sites

Questions

- Time-evolution of cluster structures?
- Potential dependence of cluster structures
- Distribution of different metals in mixed-metal clusters?
- Can we follow metal-oxygen bonding during the course of catalysis? Different cluster sizes allow us to stage different rate-determining steps.

Arrays of metal-containing clusters for catalysis

Water splitting: Electrocatalysis of water oxidation

 Heterogeneous catalysis of gas-phase reactions, e.g. alkene hydrogenation

Metal-Organic Frameworks (MOFs)

- Solvothermal synthesis; simple, scalable materials assembly
- Broad channel and pore size tunability
- Complete uniformity of channels
- Amenable to experimental structural characterization
- Amenable to computational modeling
- Enormous internal surface areas: up to 7,200 m²/g

ALD In MOFs (AIM)

Global Hypothesis: Coupling ALD and MOF (metalorganic framework) chemistry will allow us to develop hybrid materials with new and unique functions for materials related applications.

ICP-OES Metallation Results

 $AI-AIM (AI:Zr_6 = 8)$

 $Zn-AIM (Zn:Zr_6 = 4)$

Mondloch, J.E.; Bury, W. et al. J. Am. Chem. Soc. 2013, 135, 10294.

Retention of Crystallinity Following AIM: Powder X-ray Diffraction Measurements

Mondloch, J.E.; Bury, W. et al. J. Am. Chem. Soc. 2013, 135, 10294.

Bringing Other Metals into NU-1000

ALD Periodic Table of the Elements

Initial Success with AIM

UNIVERSITY

Ethylene Hydrogenation in Gas Phase

The as-synthesized Ni-AIM is not active, but H₂ treatment for 2 hours at 200 °C can activate the catalyst.

- 1. Pressure 1.5 bar
- 2. Temperature 50 °C
- 3. Ni-AIM 3.3 mg
- 4. Ethylene: H₂ 1:2

- \square Activity: On average, TOF = 0.90 ± 0.25 s⁻¹, comparable to/slightly lower than supported Pt catalysts based on different reports
- ☐ Stability: 100% conversion of ethylene for two-week consecutive run, no decrease in activity
- □ Recyclability: Expose to ambient condition deactivate the catalyst, but further H₂ treatment can re-activate Ni-AIM, 100% conversion of ethylene for another week before the experiment is stopped

Putative Schematic Representation for Ni-AIM Process

Structural information of AIM products can be obtained through pair distribution function and extended X-ray absorption fine structure (EXAFS) analysis.

Differential Pair Distribution Function Analysis on NU-1000 upon Heating

Karena Chapman

NU-1000

8 d₂ Zr-Zr distances (d₂< d₁) 4 d₃ Zr-Zr distances (d₃> d₁)

2:1 intensity (abundance) ratio short : long Zr-Zr distances

In-situ D-PDF Analysis on Ni-AIM

Gas atmosphere:
3.5% H₂ in He
Temperature program:
heat to 200°C in 1 hr
heat at 200°C in 2 hr
cool to 50°C in 1 hr

UNIVERSITY

At 200 °C there is a large change in the structure for Ni-AIM:

- ☐ The distortions look like the Zr-node distortions we associated with dehydroxylation
- ☐ There is a contraction of the average Ni-O distance.

In-situ Extended X-ray Absorption Fine Structure (EXAFS)

Jeff Miller

No observation of Ni-Ni distance indicates the single-site nature of Ni in Ni-AIM

In-situ Extended X-ray Absorption Fine Structure (EXAFS)

Jeff Miller

In-situ X-ray Absorption Near Edge Structure (XANES)

Proposed Structure of Ni-AIM

In conjunction with Density-Functional Theory calculations,

this structure is proposed.

